Отыскание максимумов и минимумов - одна из самых распространенных задач при исследованиях функций.
Непрерывная на отрезке функция принимает свое наибольшее или наименьшее значение, либо в критических точках (в точках, в которых производная обращается в нуль или не существует), принадлежащих исследуемому промежутке, или на его концах .

На практике нахождения максимумов и минимумов похоже на отыскания локального экстремума, только добавляются края промежутка. Возможны случаи, когда максимумы и минимумы функций находятся в точках локального экстремума, а возможные - на краях отрезка.

Рассмотрим ряд примеров, чтобы ознакомить Вас с методикой исследования.

-----------------------------------

Примеры.

Определить наибольшее и наименьшее значение фунции на промежутке.

Сборник В.Ю. Клепко, В.Л. Голец "Высшая математика в примерах и задачах".

1. (4.55.б)

Функция определена на всем множестве действительных чисел

Найдем производную функции

Приравняем ее к нулю и определим критические точки

Проверим знак производной слева и справа от найденной точки

Производная при переходе через точку меняет знак с положительного на отрицательный , следовательно она является точкой локального максимума.

Найдем значение функции в точке

и на краях отрезка

Таким образом функция достигает максимума в точке локального экстремума и минимума на одном из краев отрезка .

2. (4.55.д)

На заданном промежутке функция определена; вычислим ее производную

Приравнивая нуля найдем критическую точку

Заданная точка принадлежит отрезку. Найдем значения функции во всех точках

Функция приобретает максимум и минимум в точках

3. (4.55.є)

Функция определена для всех значений аргумента .

Найдем производную

Из выражения видно, что производная отлична от нуля на промежутке определения, однако в точке она не существует.

Вычислим значение функции

Наибольшее значение функция принимает в точке , а наименьшее значение в критической точке .

-----------------------------------

Приведем решения задач из сборника Дубовика В.П., Юрика И.И. "Высшая математика".

4. (5.770)

Функция определена везде, потому приступим сразу к вычислению производной

Приравняем ее к нулю и находим критические точки

Найдем значения функции во всех подозрительных на экстремум точках

Из полученного набора значений следует, что функция принимает максимум и минимум на краях отрезка

5. (5.771)

На заданном интервале функция определена, проводим дифференцировку

Приравняв к нулю производную получим

Другую критическую точку найдем из условия, что производная не существует

Одна совпадает с началом отрезка. Вычислим значение функции на краях отрезка и в критических точках

Таким образом функция принимает максимальное значение в критической точке, а минимальное на конце отрезка

Из приведенных решений можно сделать выводы, что главным в исчислении является знание функций и умение дифференцировать. Все остальное сводится к отысканию значений функций в точках и анализа результатов. Изучайте свойства элементарных функций, правила нахождения производных, это Вам пригодится при решении примеров.

----------------------------------------------

Посмотреть материалы: