Все кто ищет готовые ответы на линейные дифференциальные уравнения пришли по правильному адресу. У нас Вы сможете не только получить быстрый ответ, но и научиться методике решения уравнений. Будет ли сложной схема Бернулли для линейных уравнений зависит от Вашего уровня подготовки. Разберите внимательно приведенные ответы и сделайте выводы, что и как Вам нужно углубленно изучить.
Линейным дифференциальным уравнением первого порядканазывается уравнение вида y'+p(x)*y=g(x), где p(x) и g(x) – непрерывные на определенном промежутке функции.
Алгоритм метода Бернулли
1. Решение линейного дифференциального уравнения необходимо представить в виде произведения двух неизвестных функций y=u*v от аргумента u=u(x),v=v(x). Одну из этих функций можно выбрать произвольно, а вторая определяется из дифференциального уравнения.
2. По правилу производная произведения равна y=u*v,то y'=u'v+uv'.
3. Подставим запись функции y=u*v и производной y'=u'v+uv' в уравнение y'+p(x)*y=g(x) и получим u'v+uv'+p(x)*u*v= g(x). Сгруппируем второй и третий слагаемые, вынеся общий множитель (u) за скобки и придем к диф. уравнению u'v+u(v'+p(x)*v)=g(x).
4. Сперва определяем частное решение v=v(x), для этого решаем диф. уравнения v'+p(x)*v=0 и за произвольную постоянную интегрирования берем ноль (С=0). Данное уравнение является дифференциальным уравнением с разделяющимися переменными.
5. Далее подставим найденную функцию v=v(x) в исходное диф. уравнение u'v+uv'+p(x)*u*v= g(x), которое при этом упростится до вида u'v+u*0=g(x), то есть к дифференциальному уравнению с разделяющимися переменными u'v(х)=g(x) относительно u(x). Из этого уравнения находим u=u(x)+С.
6. Имея u=u(x) и v=v(x) находим общее решение ДУ через произведение y=u*v=( u(x)+С)* v(x).
7. Если задана задача Коши то с дополнительной условия на решение y(x0)=y0 определяем сталую С.
Пример 1. Найти решение задачи Коши
Решение:Имеем неоднородное дифференциальное уравнение первого порядка. Запишем его в правильном виде, для этого перенесем в правую сторону функцию
Далее по схеме Бернулли делаем замену переменных y=u*v, y'=u'v+uv', где u=u(x) і v=v(x).
Учитывая что множители в левой части уровне
и y2=u2v2
получим следующее уравнение

Согласно алгоритму Бернулли уравнение разделим на 2, для этого дужку слева (выделена черным) приравняем к нулю
![]()
Сводим к дифференциальному уравнению с разделенными переменными
![]()
и решаем интегрированием
В результате получили экспоненту с отрицательным показателем синуса. При этом исходное дифференциальное уравнение достаточно упростится для поиска второй неизвестной пока функции
Перенесем экспоненту с отрицательным показателем в правую сторону
и сведем к ДУ с разделенными переменными
Интегрированием уравнения в дифференциалах

находим решение дифференциального уравнения
Как описано в начале, общее решение дифференциального уравнения равно произведению функций

Но это еще не конечная ответ к задаче. Найдем частичное решение дифференциального уравнения (задача Коши), для этого определим постоянную с начального условия на функцию
![]()
Сталая равна нулю, это позволяет упростить формулу решения диф. уравнения, хотя мало кто из Вас увидит эту подсказку

Мы нашли частичный решение дифференциального уравнения и он равен экспоненте в степени "икс" y=ex.
Пример 2. Решить дифференциальное уравнение та задачу Коши
Решение:Задано неоднородное дифференциальное уравнение первого порядка, которое перепишем в виде
Выполняем замену переменных в уравнении
, где "у" и "в" принимают функциональные зависимости 
Находим выражения которые фигурируют в записи
и подставляем в исходное дифференциальное уравнение

Далее схема вычислений заключается в разделении переменных. По алгоритму Бернулли выражение, содержащее "v" приравняем к нулю
![]()
Записываем уравнение в дифференциалах
![]()
Видим что имеем уравнение с разделяющимися переменным, поетому целесообразно разделить переменные
![]()
Проинтегрировав обе части
![]()
получим логарифм и синус.
Далее экспонируем обе части и таким образом находим одну из неизвестных функций
Исходное дифференциальное уравнение при этом упростится к виду
Экспоненту в отрицательном показателе переносим вправо от знака равенства
Далее распишем уравнения через дифференциалы (/2)
и сведем к уравнению с разделенными переменными
Интеграл в правой части выглядит тяжелым для высчисления, но если внести дужку под дифференциал, то получим показатель экспоненты

Окончательно после интегрирования получим
Общий интеграл дифференциального уравнения записываем через произведение функций
![]()
Чтобы найти частичное решение дифференциального уравнения (задачи Коши) используем начальное условие

Из него определим постоянную и подставим в уравнение частного решения дифференциального уравнения
На этом и построен алгоритм Бернулли вычислений дифференциальных уравнений такого типа. Используйте алгоритм решения уравнения Бернулли ко всем подобным дифференциальным уравнениям.


