Исследование функции https://yukhym.com/ru/issledovanie-funktsii.html Sun, 05 May 2024 08:32:57 +0300 Yukhym Comunity - the full lessons for schoolboys and students! ru-ru [email protected] (YukhymComunity) Исследование функции Z(x,y) на экстремум https://yukhym.com/ru/issledovanie-funktsii/issledovanie-funktsii-z-x-y-na-ekstremum.html https://yukhym.com/ru/issledovanie-funktsii/issledovanie-funktsii-z-x-y-na-ekstremum.html Максимумом (минимумом) функции двух переменных по определению, это как и для функции f(x) одной переменной максимальное (минимальное) ее значение. На плоскости это "холмы" и "ямы", в пространстве - то же только имеет двумерное изображение. Представить как правило всегда легко, а вот для заданной функции найти точки экстремума может не каждый.

Схема исследования функции двух переменных на экстремум

Первое что нужно - это проверить выполняются ли необходимые условия экстремума, а они следующие - если функция имеет частные производные первого порядка и они равны нулю то в этих точках функция может иметь экстремумы. На практике реализация теории следующая: вычисляем частные производные и приравниваем их к нулю. В результате получим систему уравнений
условие экстремума
из которой нужно найти точки (x0; y0) подозрительные на экстремум, их еще называют стационарными.
Чтобы установить имеет ли место максимум функции, или минимум нужно вычислить частные производные второго порядка (A, B, C) в критических точках
частные производные 2 порядка
Далее в найденных точках нужно найти параметр дифференциала D

Далее возможны 4 случая:

  • функция имеет максимум, если A<0; D>0
  • функция имеет минимум, если A>0; D>0
  • не имеет экстремума, если D<0
  • при D=0 нужно проводить дополнительный анализ на экстремум.

Из анализа знаков A, D и делают выводы о точках максимума и минимума функции. Далее подстановкой точек вычисляют сам экстремум функции.
Если надо найти наибольшее (наименьшее) значение функции в замкнутой области (треугольник, прямоугольник, круг), то эти кривые подставляем в исходное уравнение и исследуем функцию на экстремум по линиям, а также проверяем стационарная точки (если они принадлежит замкнутой области). Такой пример рассмотрен в готовых контрольных работах.

Примеры на экстремумы

Пример 1. Найти экстремум функции двух переменных
Z=2*x*y-3*x^2-2*y^2
Решение: Чтобы найти критические точки функции двух переменных функция 2 переменных для начала нам следует вычислить частные производные первого порядка


Далее приравниваем частные производные к нулю и решаем систему уравнений
условие екстремумуточка экстремума
Найденные значения и являются координатами критической точки. Чтобы не исследовать функцию в окрестности точки экстремума, поскольку не имеем графика функции, установим знаки вторых частных производных в точке. Вычисляем производную второго порядка в критической точке (0;0)
частные производные 2 порядка
Далее вычисляем параметр D

Знак A<0, D>0 больше нуля, так что в критической точке (0, 0) функция имеет максимум. Значение равно свободном члену

График пространственной функции в окрестности точки экстремума имеет вид
график функции 2 переменных Пример 2. Найти точку максимума или минимума заданной функции
Z=4*x-6*y-x^2-3*y^2+5
Решение: По стандартной схеме ищем производные первого порядка

и приравниваем их к нулю. В результате получим систему уравнений с которой находим критическую точку функции

Найденая точка экстремума имеет координаты (2; -1).
Чтобы установить имеет ли место минимум функции или максимум найдем частные производные второго порядка

Находим параметр

Он положительный, так что в найденной точке функция достигает максимума. Вычислим его значение подстановкой

Точка максимума на графике будет выглядеть следующим образом
график функции Пример 3. Исследовать функцию двух переменных на экстремум
Z=3*x^2-x*y+y^2-7*x-8*y+2

Решение: Вычисляем частные производные первого порядка функции
функция 2 переменных

Приравниваем производные к нулю и решаем систему уравнений


Критическая точка имеет координаты (2, 5). Для выяснения характера точки экстремума найдем производные второго порядка в критической точке
частные производные 2 порядка
Вычисляем параметр D

Знак A, D положительный, значит в точке (2; 5) данная функция имеет минимум, вычисляем минимальное значение

График функции двух переменных приведен ниже
построение графика функции Пример 4. Найти экстремум функции двух переменных
Z=2*x^2-3*y^2+4*x+6*y+5
Решение: Найдем критические точки функции
Вычисляем частные производные
частные производные
и приравниваем их к нулю. В результате получим систему уравнений для нахождения точки экстремума
точка экстремума
Найдем производную второго порядка в стационарной точке (-1; 1)
частные производные 2 порядка
Вычисляем параметр D

Знаки A>0,D<0, так что в точке (-1; 1) функция не имеет экстремума. Это точка перегиба пространственной функции. На графике это выглядит так
построение графика функции Пример 5. Исследовать функцию на экстремум
Z=x^3+y^3-15*x*y+120.
Решение: Повторяем все пункты методики нахождения экстремумов.
Вычисляем частные производные функции первого порядка
частные производные частные производные
Приравниваем их к нулю и решаем
условие на экстремум

Отсюда получаем две подозрительные на экстремум точки
точка экстремума
точка экстремума
Далее находим производные второго порядка в критических точках (0; 0) и (5; 5)
частные производные 2 порядка
Характер первой критической точки:


В точке (0; 0)данная функция не имеет ни максимума, ни минимума.
Характер второй критической точки:


По признакам экстремума данная функция имеет минимум, а именно

Анализ функции двух переменных в Мейпл

Приведем алгоритмы анализа функции и построения графиков в математическом пакете Maple. Фрагмент кода несколько проще чем вычисления вручную. Сначала нужно занулить все переменные и подключить библиотеку для построения 3D графиков
>restart;with(plots):
Далее вводим уравнения пространственной функции
> Z=x^3+y^3-15*x*y+120;
Вычисляем частные производные
> diff(Z,x)=0;diff(Z,y)=0;
Вторые производные можно найти повторным дифференцированием
> A:=diff(Z,x,x);C:=diff(Z,y,y);B:=diff(Z,x,y);
Находим решения системы ривянянь командой solve
> solve({diff(Z,x)=0,diff(Z,y)=0},{x,y});
Далее строим графики функции с помощью команды plot3d(F,x=a..b,y=c..d) . Здесь все обозначения должны быть Вам понятны
> plot3d(Z, x= -1..1, y=-1..1);
3D график в Мейпл > plot3d(Z, x= 4..6, y=4..6);
3D график в МейплВ Мейпл нет необходимости анализировать другие производные, поскольку можем построить график и визуально проверить имеем максимум или минимум, а возможно и перегибы, как в последнем примере. Скачать математический пакет Maple Вы можете с официального сайта или поискать установочный пакет в сети интернет. Примеры приведены в пакете Maple 17.
Подобно приведенному выше выглядит анализ на экстремумы если заданные другие функции - тригонометрические, показательные, ... Все сводится к уравнениям на производные и вычислениям, которые Вы часто выполняете на занятиях.
Если не можете выполнить анализ на экстремум самостоятельно, тогда заказывайте решения задач, контрольных у нас!

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 06:08:54 +0300
Примеры исследования функции и построения графика https://yukhym.com/ru/issledovanie-funktsii/primery-issledovaniya-funktsii-postroeniya-grafika.html https://yukhym.com/ru/issledovanie-funktsii/primery-issledovaniya-funktsii-postroeniya-grafika.html Исследование функций занимает немало времени при решении контрольных, домашних заданий и чтобы научиться быстро решать нужна инструкция объясняющая порядок действий и для чего это нужно. Такая инструкция разработана математиками и обобщена на все типы функций уже давно, а мы ее называем – общая схема исследования функции.

Чтобы исследовать функцию и построить ее график необходимо:

1) найти область определения функции, то есть множество всех точек для которых существует значение функции;

2) найти (если они существуют) точки пересечения графика с координатными осями. Для этого нужно в уравнение подставить аргумент а также решить уравнение для отыскания точек пересечения с осью ;

3) исследовать функцию на периодичность, четность и нечетность. В некоторых случаях это можно сделать визуально по самому виду функции, если нет, то провести проверку:

1. – функция четная;

2. – функция нечетная;

3. – функция периодическая, – период функци.

Таким образом, если имеем парную функцию то достаточно построить ее для положительных значений , после чего отразить ее симметрично относительно оси абсцисс на другую часть. В случае нечетной функции график будет симметричен относительно начала координат. Например, если имеет нечетную функцию график которой принадлежит первой четверти вторую половину получим поворотом первой четверти на 180 градусов (третья четверть).

Периодическими являются преимущественно функции составленные из простых тригонометрических и некоторые параметрически заданные функции.

4) найти точки разрыва и исследовать их (такими точками являются края интервалов определения функции);

5) найти интервалы монотонности, точки экстремумов и значения функции в этих точках;

6) найти интервалы выпуклости, вмятины и точки перегиба;

7) найти асимптоты кривой;

8) построить график функции.

Большинство из этих пунктов было рассмотрено на практике в предыдущих статьях, поэтому подробно расписывать мы их не будем. Также не переживайте, если найдете план в литературе или интернете, который содержит более или менее пунктов. Помните, что цель их всех - помочь при построении графика функции. Перейдем к практической части и исследуем по схеме функцию.

-----------------------------------------

Пример 1.

Исследовать функцию и построить ее график (Дубовик В.П., Юрик И.И. "Высшая математика. Сборник задач")

І (5.889)

Решение:

1) Функция определена по всюду кроме точки в которой знаменатель превращается в ноль (). Область определения состоит из двух интервалов

2) При подстановке значения получим

Такую же точку получим если приравняем функцию к нулю. Точка - единственная точка пересечения с осями координат.

3) Проверяем функцию на четность

Итак функция ни четная, ни нечетная, непериодическая.

4) В данном случае имеем одну точку разрыва . Вычислим границы слева и справа от этой точки

Итак – точка разрыва второго рода.

5) Для отыскания интервалов монотонности вычисляем первую производную функции

Приравнивая ее к нулю получим точки подозрительные на экстремум . Они разбивают область определения на следующие интервалы монотонности

Исследуем поведение производной слева и справа от найденных точек разбиения

Графически интервалы монотонности будут иметь вид

Исследуемая функция возрастает на интервалах и убывает .

Точка – точка локального максимума, – локального минимума. Найдем значение функции

6) Для отыскания интервалов выпуклости найдем вторую производную

Таких интервалов нет, поскольку вторая производная не принимает нулевых значений в области определения.

7) Точка – вертикальная асимптота функции. Уравнение наклонной асимптоты имеет вид

где - границы которые вычисляются по правилу

Находим нужные границы

Конечный вид прямой следующий

8) На основе проведенного анализа выполняем построение графика функции. Для этого сначала строим вертикальные и наклонные асимптоты, затем находим значение функции в нескольких точках и по них проводим построение.

--------------------------------------

Пользуйтесь общей схемой исследования функции на практике, решайте подобные примеры самостоятельно. Это позволит в короткое время освоить данный материал. Другие примеры по данной тематике Вы найдете в следующих статьях.

Посмотреть материалы:

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 06:05:07 +0300
Интервалы монотонности функции. Критические точки https://yukhym.com/ru/issledovanie-funktsii/intervaly-monotonnosti-funktsii-kriticheskie-tochki.html https://yukhym.com/ru/issledovanie-funktsii/intervaly-monotonnosti-funktsii-kriticheskie-tochki.html Исследование функций должно начинаться с установления области определения и интервалов монотонности. Для этого студент должен обладать хорошими знаниями поведения элементарных функций и последующим теоретическим материалом.

Функция называется возрастающей на интервале если для любых двух точек и с этого промежутка и таких, что выполняется неравенство

.

Для того чтобы функция была убывающей на интервале необходимо, чтобы для любых и , принадлежащих к этому интервалу и удовлетворяющих условию исполнялось неравенство
.

Как возрастающие, так и убывающие функции называются монотонными, а интервалы в которых

функция возрастает или убывает – интервалами монотонности.

Область возрастания и убывания функции характеризуется знаком ее производной: если в

некотором интервале производная больше нуля , то функция возрастает в этом интервале;

если же наоборот – то функция убывает в этом интервале.

Интервалы монотонности могут прилегать друг к другу или точками, где производная равна нулю

или точками, где производная не существует. Эти точки называются критическими точками.

Для того, чтобы найти интервалы монотонности функции нужно:

1) найти область определения функции ;

2) вычислить производную данной функции;

3) найти критические точки из условия равенства нулю производной или при условии, что производная не существует;

4) разделить критическими точками область определения на интервалы, в каждом из которых определить знак производной.

На интервалах где производная положительная функция возрастает, а где отрицательная - убывает.

-----------------------------------

Примеры.

Рассмотрим задачу из сборника В.Ю. Клепко, В.Л. Голец "Высшая математика в примерах и задачах" на нахождение интервалов монотонности функции.

1. (3.36.10)

Функция существует во всех точках где определен логарифм и он не обращается в нуль, а также где функция под корнем принимает неотрицательные значения. На основе этого находим

Итак, областью определения будут два интервала

2. (3.36.11)

С подкоренной функцией ведем себя как и в предыдущем примере, а функция определена на промежутке . Находим область определения

Единственным промежутком, который удовлетворяет эти условия являются следующий

.

3. (3.36.13)


Область определения функции находим из двух условий

Первое условие дает две точки


в которых функция не существует.

С второго условия получим

Исследуем поведение функции в интервалах монотонности на которые разбивают заданные точки. Для этого

выбираем произвольные точки из интервалов и проверяем знак

Функция принимает положительные значения в интервалах

Вместе с первым условием получим следующую область определения

------------------------------

Рассмотрим примеры исследования монотонности функции из сборника задач Дубовика В.П., Юрика И.И. "Высшая математика" .

І. (5.705) Показать, что функция возрастает на интервале и убывает в интервале .

1) Областью определения функции будет множество значений для которых подкоренная функция принимает неотрицательные значения.

Решим квадратное уравнение

Определим знак функции на всем интервале

Таким образом получим следующую область определения

2) Найдем производную

.

3) Приравняем ее к нулю и найдем критические точки:

Не стоит забывать и о точках, в которых производная не существует. Это корни уравнения в
знаменателе. Итак производная существует на интервале в точке меняет знак.

4) Знаки производной: подставляем в производную

Так что на интервале функция возрастает, а на - убывает.

ІІ. (5.715) Найти интервалы монотонности функции

1. Областью определения будет множество точек для которых существует логарифм функция. На

основе этого получим

Итак

2) Найдем производную функции

3) Находим критические точки

Другая точка, где производная не существует это , не принадлежит области определения функции.

Таким образом получили два интервала монотонности и .

4) Выясним где функция возрастает, а где убывает. Подставим точки и в выражение для

производной

Исследуемая функция на интервале убывает и на растет.

При исследовании функций на монотонность определите все критические точки в которых производная равна нулю или не существует. Также не забывайте при этом учитывать область определения функции. Остальное зависит от Ваших знаний свойств элементарных функции, поскольку именно на их основе построены все задачи, которые Вам задают преподаватели.

----------------------------------------------

Посмотреть материалы:

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 06:04:08 +0300
Локальный экстремум функции. Примеры https://yukhym.com/ru/issledovanie-funktsii/lokalnyj-ekstremum-funktsii.html https://yukhym.com/ru/issledovanie-funktsii/lokalnyj-ekstremum-funktsii.html Отыскание локальных максимумов и минимумов не обходится без дифференцирования и является необходимым при исследовании функции и построении ее графика.

Точка называется точкой локального максимума (или минимума) функции , сли существует такой окрестность этой точки, принадлежащий области определения функции, и для всех из этого окрестности выполняется неравенство (или ).

Точки максимума и минимума называются точками экстремума функции, а значения функции в экстремальных точках - ее экстремальными значениями.

НЕОБХОДИМОЕ УСЛОВИЕ ЛОКАЛЬНОГО ЭКСТРЕМУМА:

Если функция имеет в точке локальный экстремум, то либо производная равна нулю , либо не существует.

Точки которые удовлетворяют выписанным выше требованиям называют критическими точками.

Однако в каждой критической точке функция имеет экстремум. Ответ на вопрос: будет критическая точка точкой экстремума дает следующая теорема.

ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМУМА ФУНКЦИИ

Теорема І. Пусть функция непрерывна в некотором интервале, содержащем критическую точку и дифференцированная во всех точках этого интервала (за исключением, возможно, самой точки ).

Тогда для точки функция имеет максимум, если для аргументов выполняется условие, что производная больше нуля , а для условие - производная меньше нуля .

Если же для производная меньше нуля , а для больше нуля , то для точки функция имеет минимум.

Теорема ІІ. Пусть функция дважды дифференцируема в окрестности точки и производная равна нулю . Тогда в точке функция имеет локальный максимум, если вторая производная меньше нуля и локальный минимум, если наоборот .

Если же вторая производная равна нулю , то точка может и не быть точкой экстремума.

При исследовании функций на экстремумы используют обе теоремы. Первая на практике проще, поскольку не требует нахождения второй производной.

ПРАВИЛА НАХОЖДЕНИЯ ЕКСТРЕМУМОВ (МАКСИМУМОВ И МИНИМУМОВ) С ПОМОЩЬЮ ПЕРВОЙ ПРОИЗВОДНОЙ

1) найти область определения ;

2) найти первую производную ;

3) найти критические точки;

4) исследовать знак производной на интервалах, которые получили от разбиения критическими точками области определения .

При этом критическая точка является точкой минимума, если при переходе через нее слева направо производная меняет знак с отрицательного на положительный , в противном случаэ является точкой максимума.

Вместо данного правила можно определять вторую производную и исследовать согласно второй теоремы.

5) вычислить значения функции в точках экстремума.

Рассмотрим теперь исследование функции на экстремумы на конкретных примерах.

-----------------------------------

Примеры.

Сборник В.Ю. Клепко, В.Л. Голец "Высшая математика в примерах и задачах"

1. (4.53.7)

1) Областью определения будет множество действительных чисел

;

2) Находим производную

3) Вычисляем критические точки

Они разбивают область определения на следующие интервалы

4) Исследуем знак производной на найденных интервалах методом подстановки значений

Таким образом первая точка является точкой минимума, а вторая - точкой максимума.

5) Вычисляем значение функции

------------------------------

2. (4.53.9)

1) Областью определения будет множество действительных чисел , так корень всегда больше единицы

и функция арктангенс определена на всей действительной оси.

2) Находим производную

3) С условия равенства производной нулю находим критическую точку

Она разбивает область определения на два интервала

4) Определим знак производной в каждой из областей

Таким образом находим, что в критической точке функция принимает минимальное значение.

5) Вычислим экстремум функции

------------------------------

3. (4.53.13)

1) Функция определена когда знаменатель не превращается в ноль

Из этого следует, что область определения состоит из трех интервалов

2) Вычисляем производную

3) Приравниваем производную к нулю и находим критические точки.

4) Устанавливаем знак производной в каждой из областей, подстановкой соответствующих значений.

Таким образом точка является точкой локального максимума, а локального минимума. В имеем перегиб функции, но о нем будет больше материала в следующих статьях.

5) Находим значение в критических точках

Несмотря на то, что значение функции , первая точка является точкой локального максимума, а дуга - минимума. Не бойтесь, если у Вас выйдут подобные результаты, при определении локальных экстремумов такие ситуации допустимы.

----------------------------------------------

Посмотреть материалы:

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 06:03:26 +0300
Выпуклость и вогнутисть графика функции. Точки перегиба https://yukhym.com/ru/issledovanie-funktsii/vypuklost-i-vognutist-grafika-funktsii-tochki-peregiba.html https://yukhym.com/ru/issledovanie-funktsii/vypuklost-i-vognutist-grafika-funktsii-tochki-peregiba.html Исследование функции не обходится без установки интервалов выпуклости и вогнутости, причем их могут разделять как точки перегиба, так и критические точки второго рода. Все зависит от ряда правил которые Вам придется запомнить из приведенного теоретического материала.
Кривая называется выпуклой на интервале если все ее точки, кроме точки соприкосновения, лежат ниже произвольной ее касательной на этом интервале.

И наоборот, кривая называется вогнутой на интервале если все ее точки, кроме точки соприкосновения, лежат выше произвольной ее касательной на этом интервале.

Точкой перегиба называется такая точка кривой которая отделяет ее выпуклую часть от вогнутой.

На рисунке выше кривая выпуклая на интервале и вогнута на , в точке - функция имеет перегиб.

Выпуклость и вогнутость кривой, которая является графиком функции характеризуется знаком ее второй производной: если в некотором интервале она меньше нуля то кривая выпуклая на этом интервале, а если больше то кривая вогнута на этом интервале.

Интервалы выпуклости и вогнутости могут отделяться друг от друга или точками где вторая производная равна нулю, или точками где вторая производная не существует. Эти точки называются критическими точками второго рода.

Если при переходе через критическую точку вторая производная меняет знак, то график функции имеет точку перегиба .

ПРАВИЛО НАХОЖДЕНИЯ ТОЧЕК ПЕРЕГИБА ГРАФИКА ФУНКЦИИ

1) найти область определения функции;

2) найти критические точки II рода функции ;

3) исследовать знак в интервалах, на которые критические точки делят область определения функции . Если критическая точка разделяет интервалы где вторые производные разных знаков, то является абсциссой точки перегиба графика функции;

4) вычислить значения функции в точках перегиба.

---------------------------------------------------

Задача.

Найти точки перегиба и интервалы выпуклости и вмятины графиков функций. (Дубовик В.П., Юрик И.И. "Высшая математика. Сборник задач")

І. (5.827)

1) Область определения вся действительная множество

2) Находим критические точки функции второго рода

Квадратное уравнение будет иметь следующие корни

Они разбивают область определения на следующие интервалы выпуклости или вогнутости

3) Исследуем знак производной подстановкой значений из интервалов

Из анализа знаков следует, что функция вогнута на интервалах и выпуклая при . Точки являются точками перегиба, поскольку вторая производная в них меняет знак.

4) Вычисляем значение функции

– точки перегиба.

Чтобы материал Вам хорошо воспринимался к этой задаче и последующих будут приведены графики функций с найденными критическими точками. Это поможет Вам легко представлять себе, как точки перегиба выглядят на графиках функций

---------------------------------

ІІ. (5.831)

1) Область определения будет

.

2) Критические точки II рода: найдем вторую производную функции

Решим квадратное уравнение

Вторая производная существует на всей области определения.

3) Определяем знаки второй производной на промежутках где вторая производная отлична от нуля

Таким образом, получим два интервала выпуклости и один вогнутости графика функции

4) Найдем значения функции в точках перегиба

-точки перегиба.

Часть графика функции с точками перегиба приведена ниже

---------------------------------

ІІІ. (5.834)

1) Область определения является , так как корень кубический существует для отрицательных чисел.

2) Критические точки найдем из условия равенства нулю или несуществования второй производной функции

Вторая производная существует на всей области кроме точки .

3) Предыдущие исследования показали, что точка разбивает область определения на два интервала и . Для установления, какой из них будет интервалом выпуклости а какой вогнутости, подставим точки справа и слева от критической во вторую производную.

Из этого следует, что на интервале кривая вогнута, а на – выпуклая. Исследуемая точка является точкой перегиба.

4) В точке перегиба функция принимает значение

– координаты точки перегиба. Интересующий график функции приведен ниже

---------------------------------

IV. (5.835)

1) Область определения , поскольку экспонента определена для всех аргументов.

2) Вычисляем критические точки второго рода

Из условия равенства нулю второй производной получим

Найдена точка разбивает область определения на два интервала

3) Исследуем знаки производной на найденных интервалах

На первом интервале график функции выпуклый, а на вогнутый. Точка является абсциссой точки перегиба.

4) Находим ординату

– точка перегиба. График функции имеет вид

---------------------------------

V. (5.845)

1) Областью определения является множество значений аргумента при которых знаменатель не превращается в ноль

Получаем два интервала определения функции

2) Для отыскания критических точек дифференцируем функцию дважды

Вторая производная равна нулю при и не существует в точке .

3) Исследуя знаки производной на интервалах методом подстановки значений

получиим, что функция имеет один интервал где график функции выпуклый и два где он вогнутый.

4) В точке перегиба функция примет значение

а ее графики изображен ниже

--------------------------------------------------

Правила нахождения точек перегиба достаточно просты, нужно только хорошо уметь находить вторую производную. При нахождении интервалов довольно трудно привыкнуть, что функция выпуклая там где вторая производная отрицательная, и вогнута - при положительной второй производной. Для этого нужно решить немало задач и построить не менее графиков. Учитесь на приведенных примерах, решайте самостоятельно - это ускорит усвоение теоретического материала и позволит бить спокойнее остальных при решение контрольных, тестов, зачетов.

-----------------------

Посмотреть материалы:

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 06:02:45 +0300
Асимптоты функции https://yukhym.com/ru/issledovanie-funktsii/asimptoty-funktsii.html https://yukhym.com/ru/issledovanie-funktsii/asimptoty-funktsii.html Определение асимптот функции не такое и трудное занятие если Вы хорошо знаете ряд правил и имеете добрые знания вычисления пределов. Если же не умеете находить пределы то наверстывать придется много, но научиться можно.

Прямая называется асимптотой кривой если точка кривой неограниченно приближается к ней при росте абсциссы или ординаты. Асимптоты разделяют на вертикальные, наклонные (горизонтальные) асимптоты.

ВЕРТИКАЛЬНЫЕ АСИМПТОТЫ

График функции при аргументе котрый стремится к точке имеет вертикальную асимптоту, если предел функции в ней бесконечен

Кроме этого точка является точкой разрыва II рода, а уравнение вертикальной асимптоты имеет вид

НАКЛОННЫЕ АСИМПТОТЫ

Уравнение наклонной асимптоты имеет вид

где - пределы, которые вычисляются по правилу

Если оба пределы существуют и конечны то функция имеет наклонную асимптоту, иначе - нет. Следует отдельно рассматривать случаи, когда аргумент стремится к бесконечности () и минус бесконечности ().

ГОРИЗОНТАЛЬНЫЕ АСИМПТОТЫ

Кривая имеет горизонтальную асимптоту только в том случае, когда существует конечный предел функции при и , и эта граница равна

или

Нахождение пределов в некоторых случаях упрощается, если применять правило Лопиталя.
Приведем решения типичных для практики задач на отыскание асимптот.

------------------------------------

Примеры.

Найти асимптоты функций (Дубовик В.П., Юрик И.И. "Высшая математика. Сборник задач")

І. (5.863)

Решение:

Знаменатель дроби не должен превращаться в ноль

По теореме Виета находим корни квадратного уравнения

Они разбивают область определения на следующие интервалы

Другим выводом является то, что функция имеет две вертикальные асимптоты

Найдем наклонную асимптоту

Первая граница примет вид

Другую определяем по правилу

Окончательное уравнение наклонной асимптоты следующее

График функции с асимптотами имеет вид

------------------------------------

ІІ. (5.873)

Решение:

Логарифм функция определена при положительных значениях аргумента и стремится к бесконечности при , это означает

Из этого следует что функция имеет вертикальные асимптоты при

а ее область определения следующая

С виду функции следует что функция имеет вертикальную асимптоту

Наклонных асимптот функция не имеет. График функции с асимптотами приведен ниже

-----------------------------------

(Клепко В.Ю., Голец В.И. "Высшая математика в примерах и задачах")

III. (4.71.1)

Решение:

С виду функции следует что она определена во всех точках где знаменатель не превращается в ноль, из этого следует

Эти точки представляют собой вертикальные асимптоты, а также разделяют область определения на интервалы

Наклонных асимптот функция не имеет. Это следует из одного свойства которым я поделюсь с Вами: функции вида "многочлен разделить на многочлен" имеет наклонную асимптоту только в случаях, когда наибольший степень в числителе на единицу больше, чем в знаменателе, т.е.

Горизонтальная асимптоту находим с границы

Функция с асимптотами изображена на рисунке

--------------------------------

IV. (4.71.2)

Решение:

Область определения функции

При функция имеет вертикальную асимптоту. Наклонных асимптот нет, одна горизонтальная, так как степень числителя и знаменателя равны

Функция будет выглядеть следующим образом

-----------------------------------

V. (4.71.3)

Решение:

Областью определения будут два интервала

Точка будет вертикальной асимптотой. Наклонных асимптот нет, горизонтальную находим с предела

Поведение функции изображено на рисунке

---------------------------------------------------

VI. (4.71.4)

Решение:

Область определения находим из условия

Точка является вертикальной асимптотой. Наклонную асимптоту находим на основе пределов

Окончательно получим такое уравнение асимптоты

Функция с асимптотами изображена на рисунке

---------------------------------------------

VII. (4.71.5)

Решение:

Область определения находим с условия

Точка – вертикальная асимптота. Наклонная асимптота будет известна после вычисления пределов

– уравнение наклонной асимптоты.

График функции следующий

------------------------------------

Подобных примеров можно решить еще много, схема нахождения асимптот при этом не меняется. Бывают

примеры в которых нахождение пределов трудоемкое и занимает более половины объема этой статьи, но

думаю Вам такие в обучении не встретятся.

-----------------------------------

Посмотреть материалы:

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 06:02:11 +0300
Наибольшее и наименьшее значение функции на отрезке. Решение задач https://yukhym.com/ru/issledovanie-funktsii/naibolshee-i-naimenshee-znachenie-funktsii-na-otrezke-reshenie-zadach.html https://yukhym.com/ru/issledovanie-funktsii/naibolshee-i-naimenshee-znachenie-funktsii-na-otrezke-reshenie-zadach.html Отыскание максимумов и минимумов - одна из самых распространенных задач при исследованиях функций.
Непрерывная на отрезке функция принимает свое наибольшее или наименьшее значение, либо в критических точках (в точках, в которых производная обращается в нуль или не существует), принадлежащих исследуемому промежутке, или на его концах .

На практике нахождения максимумов и минимумов похоже на отыскания локального экстремума, только добавляются края промежутка. Возможны случаи, когда максимумы и минимумы функций находятся в точках локального экстремума, а возможные - на краях отрезка.

Рассмотрим ряд примеров, чтобы ознакомить Вас с методикой исследования.

-----------------------------------

Примеры.

Определить наибольшее и наименьшее значение фунции на промежутке.

Сборник В.Ю. Клепко, В.Л. Голец "Высшая математика в примерах и задачах".

1. (4.55.б)

Функция определена на всем множестве действительных чисел

Найдем производную функции

Приравняем ее к нулю и определим критические точки

Проверим знак производной слева и справа от найденной точки

Производная при переходе через точку меняет знак с положительного на отрицательный , следовательно она является точкой локального максимума.

Найдем значение функции в точке

и на краях отрезка

Таким образом функция достигает максимума в точке локального экстремума и минимума на одном из краев отрезка .

2. (4.55.д)

На заданном промежутке функция определена; вычислим ее производную

Приравнивая нуля найдем критическую точку

Заданная точка принадлежит отрезку. Найдем значения функции во всех точках

Функция приобретает максимум и минимум в точках

3. (4.55.є)

Функция определена для всех значений аргумента .

Найдем производную

Из выражения видно, что производная отлична от нуля на промежутке определения, однако в точке она не существует.

Вычислим значение функции

Наибольшее значение функция принимает в точке , а наименьшее значение в критической точке .

-----------------------------------

Приведем решения задач из сборника Дубовика В.П., Юрика И.И. "Высшая математика".

4. (5.770)

Функция определена везде, потому приступим сразу к вычислению производной

Приравняем ее к нулю и находим критические точки

Найдем значения функции во всех подозрительных на экстремум точках

Из полученного набора значений следует, что функция принимает максимум и минимум на краях отрезка

5. (5.771)

На заданном интервале функция определена, проводим дифференцировку

Приравняв к нулю производную получим

Другую критическую точку найдем из условия, что производная не существует

Одна совпадает с началом отрезка. Вычислим значение функции на краях отрезка и в критических точках

Таким образом функция принимает максимальное значение в критической точке, а минимальное на конце отрезка

Из приведенных решений можно сделать выводы, что главным в исчислении является знание функций и умение дифференцировать. Все остальное сводится к отысканию значений функций в точках и анализа результатов. Изучайте свойства элементарных функций, правила нахождения производных, это Вам пригодится при решении примеров.

----------------------------------------------

Посмотреть материалы:

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 06:01:15 +0300
Примеры нахождения наклонных асимптот https://yukhym.com/ru/issledovanie-funktsii/primery-nakhozhdeniya-naklonnykh-asimptot.html https://yukhym.com/ru/issledovanie-funktsii/primery-nakhozhdeniya-naklonnykh-asimptot.html В предыдущей статье наведены определения наклонных, вертикальных, горизонтальных асимптот. Сейчас же будут приведены примеры нахождения асимптот с применением правила Лопиталя. Его удобно применять при нахождении границ с неопределенностями типа ноль на ноль или бесконечность на бесконечность , то есть, когда есть границы вида

или

то по правилу Лопиталя ее значение равно

если функции дифференцируемы и определены в окрестности точки . Производную можно применять повторно до тех пор, пока не получим константу в числителе или знаменателе или дробь избавится особенности.

------------------------------------

Примеры.

Найти асимптоты функций

І.

Решение:

Знаменатель дроби не должен превращаться в ноль

Область определения будет разбита на два интервала

Точка которая разбивает область определения будет вертикальной асимптотой . Найдем наклонную асимптоту согласно формулы

Первую неизвестную найдем с предела

Вторую определяем по правилу

Окончательное уравнение наклонной асимптоты следующее

Функцию с асимптотой изображено на графике

------------------------------------------

ІІ.

Решение:

Функция определена во всех точках кроме тех, в которых знаменатель равен нулю. Найдем решения квадратного уравнения

Оба корня разбивают область определения на три интервала

а также являются вертикальными асимптотами функции. Наклонную асимптоту находим с применением правила Лопиталя

При вычислении констант , входящих в уравнение прямой, пришлось применить правило Лопиталя трижды для первой и дважды для второй неизвестной. В конечном итоге получили следующее уравнение наклонной асимптоты

График функции приведен ниже

--------------------------------------

III.

Решение:

С виду функции следует что она определена во всех точках где определены корни

Накладывая оба промежутка получим область определения

Точка является вертикальной асимптотой функции. Вычислим коэффициенты, входящие в уравнение наклонной асимптоты. Применение правила Лопиталя к данному примеру никаких упрощений не даст поэтому используем другое

Упростим выражение в числителе

и подставим в границу

Уравнение наклонной асимптоты примет вид

График заданной функции с наклонной асимптотой следующий

--------------------------------------

Приведенные решения частично ознакомили Вас с возможными примерами которые могут быть на практике. Для лучшего владения данной тематикой решайте задачи самостоятельно, изучайте удобные методики нахождения пределов функции которые позволят получить результаты быстрее.

-----------------------------------

Посмотреть материалы:

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 06:00:37 +0300
Область определения функции y(x) https://yukhym.com/ru/issledovanie-funktsii/oblast-opredeleniya-funktsii-y-x.html https://yukhym.com/ru/issledovanie-funktsii/oblast-opredeleniya-funktsii-y-x.html Областью определения называют множество значений аргумента при котором существует значение функции и обозначают или . Областью значений называют множество чисел, которые принимает функция при прохождении аргументом всех значений из области определения.
Ее обозначают или . Графически обе области хорошо иллюстрирует следующий рисунок

Для схематической функции рассматриваемые области принимают значения

Методика нахождения области определения для всех функций одна и та же: нужно выявить точки при которых функция не существует, а затем исключить из множества действительных чисел . В результаты получим набор промежутков или интервалов, точки, которые образуют область определения.

Особенности элементарных функций

1) Если функция имеет вид полинома то ее областью определения будет вся действительная ось или . Такая функция определена повсюду.

2) Дробно рациональная функция , где – полиномы, областью определения имеет значения аргумента при которых знаменатель не превращается в ноль. Сначала находим решения уравнения, если те существуют, вырезаем из множества действительных значений. В результате получим набор интервалов

где – корни уравнения .

3) Функция содержит корень парного степени . В таком случае областью определения будут точки , при которых подкоренная функция принимает неотрицательные значения, т.е. решения неравенства .

4) Если корень содержит знаменатель

то область определения определяют из строгого неравенства .

5) Если в знаменателе имеем корень нечетной степени

то область определения находим из условия .

5) Если является логарифмом от другой функции , то по свойству логарифма область определения находим из условия . Как правило, это будет интервал или несколько интервалов.

6) Экспонента областью определения имеет множество аргументов , для которых определена . Например, функция определена на всей действительной оси.

7) Простые тригонометрические функции (косинус и синус) определены на всем множестве действительных чисел .

8) Тангенс и котангенс областями определения имеют интервалы, граничащих между собой точками

для первой функции и

для второй, т.е.

В случаях когда при аргументах есть множители , точки в которых функция не существует следует определять из условия

Подобным образом и для котангенса

9) Следует отметить, что обратные тригонометрические функции - арксинус и арккосинус областями значений имеют отрезок . Для отыскания областей определения необходимо решить двойное неравенство

Например, для функции имеем неравенство с которого получим

При суперпозиции функций, то есть когда задана их комбинацию, нужно находить область определения каждой из функций, после чего - сечение найденных областей.

Пример.

Решение.

Область определения первого слагаемого находим из неравенства

Второй и третий дадут следующий вклад

Сечением найденных областей будет интервал

---------------------------------------

Находите области определения по приведенной выше схеме, выключайте все лишние промежутки и точки и не допускайте ошибок. Помните, что установление областей определения - это одно из самых простых заданий при исследовании функции.

Посмотреть материалы:

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 05:59:57 +0300
Точки разрыва функции первого и второго рода https://yukhym.com/ru/issledovanie-funktsii/tochki-razryva-funktsii.html https://yukhym.com/ru/issledovanie-funktsii/tochki-razryva-funktsii.html Функция f(x) называется непрерывной в точке х = а если:
1) она определена в этой точке;
2) существует предел функции в этой точке

3) значение предела равно значению функции в точке х = а, т.е.

Если одно из условий нарушается то функция называется разрывной в точке х = а, а сама точка х = а называется точкой разрыва. Все элементарные функции являются непрерывными на интервалах определенности.

Классификация точек разрыва

Точка х0 называется точкой разрыва первого рода функции у = f(x) если существуют конечные односторонние пределы справа
предел справа
и слева
предел слева.

Если, кроме этого, выполняется хотя бы одно из условий
неустранимый разрыв первого рода
то функция в точке х = а имеет неустранимый разрыв первого рода.

Если пределы равны, однако функция не существует
устранимый разрыв первого рода
то имеем устранимый разрыв первого рода.

Точка х0 называется точкой разрыва второго рода функции у= f(x) если граница справа граница или слева предел не существует или бесконечна.

Скачком функции в точке разрыва х = х0 называется разность ее односторонних границ
скачок функции в точке
если они разные и не равны бесконечности.

При нахождении точек разрыва функции можно руководствоваться следующими правилами:

1) элементарная функция может иметь разрыв только в отдельных точках, но не может быть разрывной на определенном интервале.
2) элементарная функция может иметь разрыв в точке где она не определена при условии, что она будет определена хотя бы с одной стороны от этой точки.
3) Неэлементарные функция может иметь разрывы как в точках где она определена, так и в тех где она определена.
Например, если функция задана несколькими различными аналитическими выражениями (формулами) для различных интервалов, то на границе стыка может быть разрывной.

Рассмотрим несколько задач по данной теме.

Задача 1.
Найти точки разрыва функции
а) функция, пример

Решение:
Функция определена во всех точках кроме тех где знаменатель обращается в нуль x = 1, x = 1. Область определения функции следующая

Найдем односторонние пределы в точках разрыва
граница справа
предел слева
граница справа
предел слева

При нахождении односторонних границ подобного вида достаточно убедиться в знаке функции и в том, что знаменатель стремится к нулю. В результате получим границу равную бесконечности или минус бесконечности.

Поскольку в точках x = 1, x = -1 функция имеет бесконечные односторонние пределы, то аргументы являются точками разрыва второго рода. График функции приведен на рисунке ниже

график функции

-------------------------------------------------------

б) функция, пример

Решение:
Задача достаточно простая. В первую очередь находим нули знаменателя


Таким образом функция определена на всей действительной оси за исключением точек , которые являются точками разрыва. Вычислим односторонние пределы справа и слева
предел справа
граница слева
предел справа
предел слева


Пределы бесконечны поэтому, по определению, имеем точки разрыва второго рода.

график функции

Из графиков приведенных функций видим что для ряда из них отыскания точек разрыва сводится до нахождения вертикальных асимптот. Но бывают функции которые и без вертикальных асимптот имеют разрывы первого или второго рода.

-------------------------------------------------------

в) функция, пример

Решение:
Заданная функция непрерывна на всей числовой оси кроме точки x = -3. Вычислим односторонние границы в этой точке
предел справа
предел слева

Они различаются по значениям, однако есть конечными. Итак точка x = -3 является неустранимой точкой разрыва І рода.

график функции

-------------------------------------------------------

Задача 2.
Найти точки разрыва функции если они существуют. Вычислить скачок функции в точке разрыва. Построить график функции.

а) функция, пример

Решение:
Для заданной функции точка x = 2 является точкой разрыва. Найдем предел функции , чтобы определить характер разрыва
предел справа
предел слева

По определению, точка x = 2 является неустранимой точкой разрыва первого рода. Вычислим скачок функции при x=2

График функции на интервале который нас интересует приведен далее

график функции

-------------------------------------------------------

б) функция, пример

Решение:
Неэлементарная функция y (x) определена для всех положительных значений аргумента. Точки которые разбивают функцию на интервалы могут быть разрывами. Для проверки найдем соответствующие пределы
предел слева
предел справа

Поскольку предел функции в точке x = 2 равен значению функции в этой точке то функция - непрерывная.

Отсюда также следует, что для непрерывной функции скачок равен 6-6 = 0.

Исследуем на непрерывность вторую точку
предел слева
предел справа

По определению функция в точке x = 2 имеет неустранимый разрыв І рода.

Прыжок функции равен 29 - (- 3) = 31.

По условию задания построим график функции.

график функции

Из приведенного материала Вы должны научиться находить разрывы первого и второго рода, а также различать их. Для этого подобрано немного примеров, которые в полной мере раскрывают все важные вопросы темы. Все остальное сводится к нахождению простых односторонних пределов и не должно быть для Вас сложным.

]]>
[email protected] (Yukhym Roman) Функции Sat, 11 Jul 2015 05:59:13 +0300