Завдання в яких потрібно знайти ймовірність вибрати рівно m з n речей, не менше m з n, хоча б m з n за умови, що є речі з іншими властивості (кульки іншого кольору, браковані деталі, кольорові лампочки, телефон і т.д.) часто можна зустріти на практиці, модулях та контрольних з ймовірності. Вони не важкі в плані обчислень, потрібно знати одну формулу з комбінаторики (сполучення) та вміти спрощувати факторіали.
Інший спосіб знайти ймовірність, який Ви можете використовувати в роботі після закінчення ВУЗів, або для самоперевірки вдома - це написання програм (скриптів) в математичних пакетах, які більш швидші та унеможливлюють виконання помилок при правильно написаному коді. Плюс до того - це свого роду підготовка до програмування, яке так швидко розвивається та охоплює всі можливі галузі. Про це все піде мова далі, тому читайте і застосовуйте на практиці.

Задача 1 В урні 6 білих і 23 чорні кульки. З урни навмання виймають 4 кульки. Знайти ймовірність того, що серед них будуть:

  • а) 3 білі кульки;
  • б) 3 чорні кульки;
  • в) 3 білих або 3 чорних кульки;
  • г) 2 білих і 2 чорних кульок;
  • д) не більше ніж 3 білі кульки;
  • е) не менше ніж 3 чорні кульки;
  • є) хоча б одна біла кулька;
  • ж) кульки одного кольору.


Розв'язання: Наведені далі пояснення є спільними для всіх задач з подібними умовами. Це можуть бути карти, кубики, деталі, машини, телефони і т. д.
Головне тут умови, які перелічені в пунктах а-ж.
а)
Згідно головного і самого зрозуміого означення ймовірність рівна частці сприятливих подій до всіх можливих.
Число всіх можливих подій в даній задачі це кількість способів, за якими можна вибрати 4 кульки із 29 (6+23)
n=C294.
Число сприятливих подій рівне добутку:
m=C63·C231=460,
де C63 - кількість способів, за якими можна вибрати 3 білих кульки з 6;
C231- кількість способів, за якими можна вибрати 1 чорну кульку з 23.
Ймовірність події A, при якій виймають 3 з 6 кульки білого кольору рівна частці:

З пояснеь ніби все просте і зрозуміле, проте як показує практика не всі студенти це розуміють, а ще є таке як "лінь" вчити. Тому все буде багатократно повторювати та розбирати до дрібниць.

б) Число всіх можливих подій за якими можна вибрати 4 кульки із 29 стале для всіх пунктів і рівне
n=C294=23751.
Число сприятливих подій:
m=C233·C61=10626
де C233 - кількість способів, за якими можна вибрати 3 чорних кульки з 23;
C61- кількість способів, за якими можна вибрати 1 білу кульку з 6.
Ймовірність події B, при якій виймають 3 з 23 кульки чорного кольору рівна 0.4474:

В попередньому пункті та всюди далі застосовуємо формулу Cnm=n!/m!/(n-m)! оскільки нам не важливо, яка з кульок буде вибрана першою, а яка остатньою. Тут порядок вхлдження не важливий. Там де порядок важливий сід використовувати Anm=n!/m!

в) Ймовірність вибрати 3 білих або 3 чорних кульок – це сума ймовірностей p(A) і p(B): p=p(A)+p(B)=0,0194+0,4474=0,4668.
Подумайте, чому саме так?

г) Ймовірність вибрати 2 білих і 2 чорних кульки рівна 0.1598:

тут C62 - кількість варіантів вибрати 2 білих кульки з 6;
C232- кількість всеможливих способів вибрати 2 чорних кульки з 23.

д) Ймовірність вибрати не більше ніж 3 білих кульки означає або 0, або 1, або2, або 3 серед усіх.
На мові формул це сума ймовірностей p(0), p(1), p(2), p(3) (пояснення ті самі, що і в попередніх пунктах):


е) Ймовірність вибрати не менше ніж 3 чорних кульки означає або 3, або 4.
Це сума ймовірностей p(3), p(4), тому знаходимо за формулою:

є) Імовірність вибрати хоча б одну білу кульку є протилежною до ймовірності вибрати 4 кульки чорного кольору, тому:

Це найпростіший спосіб, оскільки не маємо суми багатьох доданків, а лише від повної імовірності (=1) віднімаємо ймовірність протилежної події.

ж) Ймовірність вибрати кульки одного кольору означає вибрати або 4 з 6 білих кульок, або 4 з 23 чорних кульок:

Щоб наведені відповіді не були для Вас примітивими та без практичного застосування наведемо алгоритм, як знайти ймовірності в Мейплі. Це нескладно + стане в нагоді для всіх хто вчить математичні програми, хоче знати щось нове, займається репетиторством, чи немає бажання марнувати часу для обчислень на калькуляторі.
Матеріал також буде корисним і студентам чи викладачам, які виконують курсові та модулі з ймовірності на замовлення.
>restart: дана команда занулює (очищає память) всі значення, що були попередньо присвоєні.
Далі створюємо фунцію, щоб кожного разу не писати дробові функції з фаторіалами.
> C:=(n,m)-> n!/m!/(n-m)!;
Далі обчислюємо чисельники та знаменники, які фігурують в прикладах та саму ймовірність настання події.
> n:=C(29,4);
n := 23751

> m1:=C(6,3)*C(23,1);
m1 := 460

> p1=evalf(m1/n);
p1 = 0.01936760557

> m2:=C(23,3)*C(6,1);
m2 := 10626

> p2=evalf(m2/n);
p2 = 0.4473916888

> m3:=C(6,2)*C(23,2);
m3 := 3795

> p3:=evalf(m3/n);
p3 := 0.1597827460

Тут Ви отримаєте задовільну точність обчислень і можливість контролювати відповіді.
При бажанні можете написати скрипти, які за одну дію дають відповідь на будь-який з пунктів завдання. Для цього спробуйте побудувати функцію, яка в свою чергу викликає C(n,m). Поекспериментуйте і Вам обов'язково сподобається розв'язувати задачі з теорії ймовірностей в Мейплі.
Вікно з результатами компіляції наведено далі

Розглянемо ще дві задачі, які задавали на модулі з теорії ймовіності.

Приклад 2 В урні 7 білих і 24 чорні кульки. З урни навмання виймають 5 кульок. Знайти ймовірність того, що серед них будуть:

  • а) 4 білі кульки;
  • б) 4 чорні кульки;
  • в) 4 білих або 4 чорних кульок;
  • г) 2 білі і 3 чорні кульки;
  • д) не більше ніж 4 білі кульки;
  • е) не менше ніж 4 чорні кульок;
  • є) хоча б одна біла кулька;
  • ж) кульки одного кольору.

Значення параметрів для варіанту наведено в таблиці

Розв'язання: Схема розрахунків ідентична до першої задачі, однак повторення необхідне, щоб дехто можливо зрозумів особливі моменти, які не завжди легко усвідомити з одного наведого прикладу.
а) Знаходимо знаменник – кількість способів, за якими можна вибрати 5 кульок із 31 (7+24)
n=C315 =169911.
Число сприятливих подій через добуток:
m=C241·C74=24·C74=840.
де C74 - кількість способів, за якими можна вибрати 4 білих кульок з 7;
C241- кількість способів, за якими можна вибрати 1 чорну кульку з 24.
Ймовірність події A, при якій виймають 4 з 5 кульки білого кольору рівна m/n=0.0049:


б) Число сприятливих подій для умови рівне:
m=C244·C71=7·C244=74382
де C244 - кількість способів, за якими можна вибрати 4 чорних кульки з 5;
C71 - кількість способів, за якими можна вибрати 1 білу кульку з 5.
Імовірність дістати 4 з 5 кульки чорного кольору серед усіх інших комбінацій рівна 0.4377:


в) Ймовірність вибрати 4 білих або 4 чорних кульок з 5 – це сума знайдених в попередніх двох пунктах значень p(A) і p(B):
p=p(A)+p(B)=0,0049+0,4377=0,4426.

г) Далі знаходимо імовірність вийняти 2 білі і 3 чорні кульки з 5:

де C72 - кількість способів, за якими можна вибрати 2 білі кульки з 7;
C244- кількість способів, за якими можна вибрати 3 чорні кульки з 24.
Думаю коментарів достатньо, як і пояснень чому саме так, а не інакше!

д) Імовірність вибрати не більше ніж 4 білі кульки є подією, яка протилежна до події витягнути всі 5 білих кульок, тобто


е) Імовірність вибрати не менше ніж 4 чорні кульки означає або 4 з 5 або всі 5.
Це сума ймовірностей p(4), p(5) (пояснення аналогічні до попередніх пунктів):


є) Ймовірність дістати хоча б одну білу кульку є протилежною до ймовірності вибрати 5 кульок чорного кольору, тому:

Поміркуйте, які варіанти можливі при 5 кульках і Ви зрозумієте чому так, та ще отримаєте багато корисних висновків, про які мало хто хоче наголошувати в теорії.

ж) Імовірність вибрати кульки одного кольору означає вибрати або 5 з 7 білих кульок, або 5 з 24 чорних кульок, а це рівне сумі ймовірностей:

Ще одне завдання розв'язано. Думаю всым все зрозуміло і можемо розглянути нове завдання, яке в цій публікації останнє. Більше подібного змісту завдань шукайте в сусідніх статтях або в розділі контроьних робіт з ймовірності.

 

Задача 3 В урні a=16 білих і b=12 чорних кульок. З урни навмання виймають c=9 кульок. Знайти ймовірність того, що серед них будуть:

  • а) l=4 білих кульок;
  • б) s чорних кульок;
  • в) l=4 білих або s чорних кульок;
  • г) m=6 білих і n=3 чорних кульок;
  • д) не більше ніж l=4 білих кульок;
  • е) не менше ніж s=7 чорних кульок;
  • є) хоча б одна біла кулька;
  • ж) кульки одного кольору.

Розв'язання:Повторення матеріалу це найкращий спосіб знайти або помилку або щось нове.
а) Знаходимо сисло всіх можливих способів, за якими можна вибрати 9 кульок із 28=16+12 рівне
n=C289 =6906900.
Далі через два множники обчислюємо число сприятливих подій:
m=C164·C125=1441440
де C164- кількість способів, за якими можна вибрати 4 білих кульок з 16;
C125- кількість способів, за якими можна вибрати 5 чорних кульок з 12.
Імовірність події A, при якій виймають 4 з 9 кульки білого кольору рівна 0.2087:

Тут розписані факторіали, ми їх спрощуємо легко. Хто має труднощі з факторіалами починайте з легих завдань та по мірі знань переходіть до важчих.

б) Число сприятливих подій вийняти 7 чорних кульок з 9 рівне:
m=C127·C162=95040
де C127 - кількість способів вибрати 7 чорних кульок з 12;
C162- кількість варіантів дістати 2 білі кульки з 16.
Ймовірність події B, при якій виймають 7 з 9 кульок чорного кольору рівна 0.0138:


в) Імовірність вибрати 4 білих або 7 чорних кульок з 9 – це сума попередньо знайдених величин p(A) і p(B):
p=p(A)+p(B)=0.2087+0.0138=0.2225.

г) Знайдемо імовірність вибрати 6 білих і 3 чорних кульок з 9:

де C166 - кількість способів, за якими можна вибрати 6 білих кульок з 16;
C123- кількість способів, за якими можна вибрати 3 чорних кульок з 12.

д) Імовірність вибрати не більше ніж 4 білі кульки означає або 0, або 1, або 2, або 3, або 4 з 9.
Це сума ймовірностей p(0), p(1), p(2), p(3), p(4) (пояснення на основі вивченого раніше):


е) Ймовірність вибрати не менше ніж 7 чорних кульок означає від 7 до 9 з 9.
Це сума трьох доданів p(7), p(8), p(9) які знаходимо за формулою:


є) Імовірність вибрати хоча б одну білу кульку є протилежною до ймовірності вибрати 9 кульок чорного кольору, тому:


ж) Імовірність отримати всі кульки одного кольору означає вибрати або 9 з 16 білих кульок, або 9 з 12 чорних кульок:

Як я обіцяв - це останнє завдання, решта готових відповідей в наступному матеріалі.

З наведених пояснень можна переконатися завдання не складні, якщо мати детальну інструкцію перед очима.
Вам також допоможе знання математичних пакетів, їх безліч, тому який краще вчити обирайте самостійно.
І пам'ятайте, що тільки практика та самоосвіта допоможуть Вам зрозуміти, що за що відповідає, і як правильно читати (трактувати) запитання в умові задачі.