В попередній статті детально розібрано кілька задач на повну ймовірність, показано як позначати гіпотези та знаходити їх ймовірність.
Сьогодні завдання – навчитися застосовувати теорему Байєса.
Формула Байєса містить повну ймовірність в знаменнику дробу, а в чисельнику умовну ймовірність.
Щоб детально розібратися що за що відповідає уважно перегляньте наступні готові відповіді до прикладів.

Приклад 1 В першій урні 5 білих і 3 чорних кульки, в другій урні 6 білих і 4 чорних кульки.
З навмання вибраної урни взяли кульку, яка виявилась білою.
Яка ймовірність, що вона взята з другої урни?
Обчислення: Позначимо через А подію, що вийнята кулька біла.
В першій урні маємо 5+3=8 кульок, в другій 6+4=10. Сумарно маємо 10+8=18 кульок.
Нехай B, C – гіпотези, що кулька вийнята з першої та другої урни відповідно.
Взагалі кажучи гіпотези можна позначати будь-якою великою літерою латинського алфавіту.
Але це доцільно робити коли їх не більше 3.
Коли 3 і більше то доречно використовувати одну велику літеру і номер гіпотези, наприклад H1,H2,H3,H4
(H від слова hypothesis – гіпотеза, припущення).
Таким чином легше виписувати ймовірності та контролювати, що й до чого належить.

Позначимо через P(B), P(C) – ймовірності вийняти кульки з першої та другої урни.
Вони рівні частці кульок в загальній сукупності, тобто
P(B)=8/18=8/18;
P(C)=10/18.

Ймовірність вийняти білу кульку з першої урни рівна частці білих кульок в ній
P(A/B)=5/8.
Це умовна ймовірність і тлумачити її можна так:
якщо вибрана перша урна (B), то ймовірність вийняти білу кульку (ймовірність події А) рівна P(A/B).
Умовну ймовірність ще позначають P(A|B), PB(A), то ж не дивуйтеся якщо викладач саме в таких позначеннях буде пояснювати ймовірнісні задачі.

Відповідне значення ймовірності вийняти білу кульку з другої урни рівне
P(A/C)=6/10.
Ймовірність вийняти білу кульку рівна повній ймовірності, яка в свою чергу рівна сумі попарних добутків ймовірності гіпотез на умовні ймовірності події А при підтвердженні гіпотез:
P(A)=P(B)·P(A/B)+P(C)·P(A/C)=8/18·5/8+10/18·6/10=11/18=0.6(1)
Ймовірність вийняти білу кульку з другої урни рівна вкладу 2 доданку в попередній ймовірності
P(C/A)=P(C)·P(A/C)/P(A)=6/18/(11/18)=6/11=0,54(54)
Попередній запис і є відомою формулою Байєса, а ймовірність рівна
P(C/A)=0,54(54)
Відповідь: 0,54(54).

Далі пояснення будуть менш деталізовані, але головна суть методу Байєса Вам повинна бути зрозуміла. 

Приклад 2 Дві секретарки заповнюють документи, які складають у спільну папку.
Ймовірність того, що помилки в документі зробить перша секретарка, становить 0,04, а друга-0,2.
Перша секретарка заповнила 40 документів, друга-30.
Навмання взятий документ із папки виявився з помилками.
Визначити ймовірність того, що його заповнювала друга секретарка.
Обчислення: Позначимо через H1,H2 гіпотези, що документи заповняли перша та друга секретарки відповідно.
Подія А відповідає тому, що навмання взятий документ виявився з помилками.
Ймовірність взяти документ першої та другої секретарки рівні
P(H1)=30/(30+40)=3/7;
P(H2)=40/70=4/7.

Ймовірність, що помилки зробили секретарки рівні
P(A/H1)=0,04;
P(A/H2)=0,2.

Тоді ймовірність події А знаходимо за формулою повної ймовірності
P(A)= P(H1)• P(A/H1)+ P(H2)• P(A/H2)= 3/7•0,04+4/7•0,2=0,131
Ймовірність того, що документ з помилкою заповнювала друга секретарка знайдемо за формулою Байєса
P(A/H2)= P(H2)•P(A/H2)/ P(A)= 4/7•0,2/0,131=0,87
Відповідь: 0,87.

 

Приклад 3 У змаганнях з шахів беруть участь 5 студентів економічного, 3 – біологічного, 4 – географічного та 4 - математичного факультетів.
Серед учасників є троє дівчат з економічного, одна з біологічного та по дві з географічного та математичного факультетів.
Навмання вибраний учасник виявився дівчиною.
Яка ймовірність, що він навчається на економічному факультеті?
Обчислення: Завдання на знання формул повної ймовірності та Байєса. Подія А  навмання вибраний студент є дівчиною.
Позначимо через Н1, Н2, Н3, Н4 гіпотези, що обраний студент навчається на економічному, біологічному, географічному та математичному факультеті.
Тоді ймовірності зроблених гіпотез рівні долі студентів кожного з факультетів у загальній їх кількості:
p(H1)=5/(5+3+4+4)=5/16;
p(H2)=3/16;
p(H3)=4/16=1/4;
p(H4)=4/16=1/4.

Умовні ймовірності події А за умови, що вибраний певний факультет рівні частці кількості дівчат на кожному факультеті до загальної кількості студентів, тобто
p(A/H1)=3/5;
p(A/H2)=1/3;
p(A/H3)=2/4=1/2;
p(A/H4)=1/2.

Ймовірність, що навмання обраний студент – дівчина, обчислимо за формулою повної ймовірності
P(A)= P(H1)•P(A/H1)+P(H2)•P(A/H2)+P(H3)•P(A/H3)+P(H4)•P(A/H4)=
= 5/16•3/5+3/16•1/3+1/4•1/2+1/4•1/2=0,5.

Ймовірність, що дівчина навчається на економічному факультеті знаходимо за формулою Байєса
P(H1/A)= P(H1)•P(A/H1)/P(A)=0,1875/0,5=0,375.
Це також умовна ймовірність.
Відповідь: 0,375.

 

Приклад 4 Василь, Тарас і Андрій працюють у банку. За день Василь обслуговує 12 клієнтів, Тарас – 25, Андрій – 10.
Ймовірність того, що при розмові з Василем клієнт захоче користуватися послугами банку становить 0,7, з Тарасом – 0,6 і з Андрієм – 0,8.
Навмання вибраний клієнт користувався послугами банку.
Визначити ймовірність того, що цю послугу оформив Василь.
Обчислення: Приймемо через H1,H2,H3 гіпотези, що послугу оформляли Василь, Тарас та Андрій відповідно.
Ймовірності гіпотез пропорційні кількості клієнтів, обслужених кожним з працівників
P(H1)=12/(12+25+10)=12/47;
P(H2)=25/47;
P(H3)=10/47.

Подія А полягає в тому, що вибраний клієнт користувався послугами банку.
Якщо клієнт розмовляв з Василем, то ймовірність скористатися послугами банку рівна 0,7.
Тобто маємо умовну ймовірність події А.
Для Василя та 2 інших працівників відповідні ймовірності рівні
P(A/H1)=0,7;
P(A/H2)=0,6;
P(A/H3)= 0,8.

Через формулу повної ймовірності оцінимо чи навмання вибраний клієнт користувався послугами банку
P(A)= P(H1)•P(A/H1)+P(H2)•P(A/H2)+P(H3)•P(A/H3)=
=12/47•0,7+25/47•0,6+10/47•0,8=0,668.

Ймовірність, що послугу оформляв Василь знайдемо за формулою Байєса
P(A/H1)= P(H1)•P(A/H1)/ P(A)= 12/47•0,7/0,668=0,26755.
Відповідь: 0,26755.

На цьому поки що розгляд формули Байєса завершено. 
При виконанні замовлень з ймовірності задачі на повну ймовірність та формулу Байєса зустрічаються в широкої аудиторії студентів, тож добре розберіть для себе алгоритм обчислень та наведену структуру пояснень до задач.