Метод Гаусса заключается в последовательном исключении переменных и преобразовании системы линейных алгебраических уравнений

к треугольному виду

Предположим, что в системе коэффициент . Если это условие не выполняется, то на первое место переносим уравнение, которое ее удовлетворяет. С помощью первого уравнения исключим из остальных уравнений.

Для этого делят первую строчку на , обозначим

.

Дальше второй строки вычитаем первую строку, умноженную на ;от третьего первую строчку, умноженный на ; и так далее до последней строки. Получим таблицу коэффициентов:

Для неизвестных имеем систему уравнений. Выполняя, как и раньше, исключим из всех уравнений, начиная с третьего. Для этого сначала разделим вторую строчку на .

Если коэффициент , то переставим уравнения так, чтобы выполнялось условие .

Обозначив

,

от третьей строки вычтем вторую строчку, умноженный на ;

от четвертой строки вычтем вторую строчку, умноженный на и т.д. Получим таблицу коэффициентов:

Продолжая процесс исключения неизвестных получим таблицу:

Таблица коэффициентов при неизвестных сводится к треугольному виду. Все главной диагонали элементы . Запишем соответствующую систему уравнений:

Переход от первой системы уравнений до последней называется прямым ходом метода Гаусса. Обратный ход метода Гаусса начинается с последней системы уравнений. Ее решают с конца до начала. Из последнего уравнения находят . Подставив это значение в предпоследнее - находят и т.д. Из первого уравнения находят .

Если система уравнений с неизвестными имеет единственное решение, то эта система всегда может быть преобразована к треугольному виду. Для студентов не всегда требуют, чтобы диагональные элементы были равны единице. Достаточно просто свести систему линейных уравнений к верхней треугольной.

--------------------------------------------

Пример 1.

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Гаусса.

Решение.

Исключим неизвестную из второго и третьего уравнения. Для этого от них вычтем первое умноженное на

Видим, что наше уравнение в таком виде можно решать обратным ходом метода Гаусса. Для этого из последнего уравнения выразим

Подставим полученное значение в предыдущее уравнение и найдем

Из первого уравнения находим

Решение данной системы равен

-----------------------------------------

В случаях систем больших размеров, а также для удобства, часто на практике используют другую схему решения. Вместо преобразований над системой выполняют соответствующие преобразования над матрицей, составленной из коэффициентов при неизвестных и столбца из свободных членов, который для удобства выделяют вертикальной линией. Такую матрицу называют расширенной матрицей системы.

-----------------------------------------

Пример 2.

Решить систему четырех линейных алгебраических уравнений методом Гаусса.

Решение.

Выпишем расширенную матрицу для данной системы

Сведем ее к треугольному виду с помощью элементарных преобразований.

1.Поменяем местами первый и второй строки.

2. Добавим к элементам второго, третьего и четвертого строк элементы первой строки, умноженные соответственно на

3. Поменяем местами второй и третий строки. Добавим к элементам третьего и четвертого строк элементы второй строки, умноженные соответственно на

4. От четвертого уравнения умноженного на вычитаем третье уравнение умноженное на

Такой расширенной матрицы соответствует следующая система уравнений

С четвертого уравнения находим и подставляем в третье уравнение

Найденные значения подставляем во второе уравнение

Из первого уравнения находим первую неизвестную

Система полностью решена и – ее решение.

-----------------------------------------------------

Посмотреть материалы: